Giant electrocaloric effect in ferroelectric nanotubes near room temperature
نویسندگان
چکیده
Ferroelectric perovskite oxides possess large electrocaloric effect, but only at high temperature, which limits their potential as next generation solid state cooling devices. Here, we demonstrate from phase field simulations that a giant adiabatic temperature change exhibits near room temperature in the strained ferroelectric PbTiO₃ nanotubes, which is several times in magnitude larger than that of PbTiO₃ thin films. Such giant adiabatic temperature change is attributed to the extrinsic contribution of unusual domain transition, which involves a dedicated interplay among the electric field, strain, temperature and polarization. Careful selection of external strain allows one to harness the extrinsic contribution to obtain large adiabatic temperature change in ferroelectric nanotubes near room temperature. Our finding provides a novel insight into the electrocaloric response of ferroelectric nanostructures and leads to a new strategy to tailor and improve the electrocaloric properties of ferroelectric materials through domain engineering.
منابع مشابه
Electrocaloric effect in ferroelectric nanowires from atomistic simulations
Electrocaloric effect is presently under active investigation owing to both the recent discoveries of giant electrocaloric effects and its potential for solid state cooling applications. We use first-principles-based direct simulations to predict the electrocaloric temperature change in ferroelectric ultrathin nanowires. Our findings suggest that in nanowires with axial polarization direction t...
متن کاملPreparation and Field-Induced Electrical Properties of Perovskite Relaxor Ferroelectrics
(111)-oriented and random oriented Pb0.8Ba0.2ZrO3 (PBZ) perovskite relaxor ferroelectric thin films were fabricated on Pt(111)/TiOx/SiO2/Si substrate by sol-gel method. Nano-scaled antiferroelectric and ferroelectric two-phase coexisted in both (111)-oriented and random oriented PBZ thin film. High dielectric tunability (i = 75%, E = 560 kV/ cm ) and figure-of-merit (FOM ~ 236) at room temperat...
متن کاملElectrocaloric Effect (ECE) in Ferroelectric Polymer Films
The electrocaloric effect (ECE) is the change in temperature and/or entropy of a dielectric material due to the electric field induced change of dipolar states. Electrocaloric effect in dielectrics is directly related to the polarization changes under electric field.[1-3,6] Hence a large polarization change is highly desirable in order to achieve a large ECE which renders the ferroelectric mate...
متن کاملLarge Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics
Both relaxor ferroelectric and antiferroelectric materials can individually demonstrate large electrocaloric effects (ECE). However, in order to further enhance the ECE it is crucial to find a material system, which can exhibit simultaneously both relaxor ferroelectric and antiferroelectric properties, or easily convert from one into another in terms of the compositional tailoring. Here we repo...
متن کاملLarge Electrocaloric Effect in Lead-Free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Ceramics Prepared via Citrate Route
The 1 wt % Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O₃ (BCZT-Li) ceramics prepared by the citrate method exhibit improved phase purity, densification and electrical properties, which provide prospective possibility to develop high-performance electrocaloric materials. The electrocaloric effect was evaluated by phenomenological method, and the BCZT-Li ceramics present large electrocaloric temperature ...
متن کامل